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Abstract19

It is well known that animals rely on multiple sources of information in order to successfully identify sounds20

in natural environments, to make decisions that are optimal for their survival. For example, rats use duration21

and pitch cues to respond appropriately to prosocial and distress vocalizations (Saito et al., 2019). Vo-22

calization duration cues are known to co-vary with other temporal cues (Khatami et al., 2018), yet little23

is known about whether animals rely upon such co-variations to successfully discriminate sounds. In the24

current study, we find natural alarm vocalizations in rats have onset and offset slopes that are correlated25

with their duration. Accordingly, vocalizations with faster onset slopes are more likely to have shorter dura-26

tions. Given that vocalization slopes begin and end within milliseconds, they could provide rapid perceptual27

cues for predicting and discriminating vocalization duration. To examine this possibility, we train rodents28

to discriminate duration differences in sequences of synthetic vocalizations and examine how artificially29

changing the slope impacts duration judgments. We find animals are biased to misjudge a range of synthetic30

vocalizations as being shorter in duration when the onset and offset slopes are artificially fast. Moreover,31

this bias is reduced when rats are exposed to multiple synthetic vocalization bursts. The observed perceptual32

bias is accurately captured by a Bayesian decision-theoretic model that utilizes the empirical joint distribu-33

tion of duration and onset slopes in natural vocalizations as a prior during duration judgements of synthetic34

vocalizations. This model also explains why the bias is reduced when more evidence is accumulated across35

multiple bursts, reducing the prior’s influence. These results support the theory that animals are sensitive36

to fine-grained statistical co-variations in auditory timing cues and integrate this information optimally with37

incoming sensory evidence to guide their decisions.38

Introduction39

When someone jams their toe on a door and belts out an expression of, “oww, oww, oww”, how do40

you judge whether they are truly hurt or just mildly annoyed? Certainly, the duration, loudness, and pitch41

of each “oww” will help you judge the expression (Belin et al., 2008; Jürgens et al., 2018; Lausen and42

Hammerschmidt, 2020). The slope of sound level increase with the onset and offset of each “oww” is43
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also an important cue (Cumming et al., 2015; Paquette and Peretz, 1997; Stecker and Hafter, 2000; Grassi44

and Darwin, 2006; Friedrich and Heil, 2017). To make an accurate judgment, it could be important to hear45

“oww” repeated multiple times to accumulate sound feature information (Brunton et al., 2013). Finally,46

there can be unique combinations of temporal features in sounds that convey the information needed to47

properly judge and categorize them (Bizley and Cohen, 2013). Accordingly, the effective judgment of such48

expressions could require detecting a combination of acoustic features and their co-variations on multiple49

timescales.50

Though much is known about how acoustic features themselves shape perception, far less is known about51

how their statistical variations may do so. Previously, we observed a physical limit in vocalization sequences52

that humans and other animals generate where longer vocalizations cannot be repeated faster than the dura-53

tion allows (Khatami et al., 2018). This results in an increase in the statistical probability that long-duration54

vocalizations will have slower repetition rates than short-duration vocalizations. In other words, the repeti-55

tion rate could be predictive of vocalization duration or vice versa. Indeed, mathematically, the combination56

of vocalization duration and repetition rate objectively differentiates vocalization type or category across a57

wide range of animals including humans (Khatami et al., 2018). On shorter timescales, humans rely heavily58

on the rate or slope of sound onset to judge the duration or loudness of sound (Stecker and Hafter, 2000;59

Grassi and Darwin, 2006; Friedrich and Heil, 2017). Indeed, it has been suggested that the sound onset60

slope is a more informative cue for sound duration than the sustained sound duration itself (Friedrich and61

Heil, 2017)! However, there are no theories for how such cue interactions come about. One well-supported62

theory is that perception is strongly influenced by statistical variations of acoustical cues found in natural63

sounds (Elliott and Theunissen, 2009; Geffen et al., 2011; McDermott and Simoncelli, 2011; Zhai et al.,64

2020) Along these lines, we propose that statistical co-variations between onset and duration in natural65

sounds could explain why sound onsets strongly influence the perception of sound duration.66

Here we explore and computationally model how animals judge sound durations with independent67

variation in sound slope. We examine these perceptual interactions in rodents, as they share similar brain68

organization and sound duration perception with other mammals including humans (Kelly et al., 2006; Read69

and Reyes, 2018). Here, rodents are trained to judge duration differences in large sets of synthetic sound70

burst sequences with durations ranging from 100 to 250 ms. The durations of these sound burst sequences71
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are similar to those found in natural rodent vocalizations. However, our sound design allows us to artificially72

impose fast slopes on longer-duration sounds to explore how sound slope impacts the perception of duration.73

Intriguingly, we find long-duration sounds with faster than normal slopes are systematically misjudged as74

being shorter in duration. This perceptual misjudgment or bias dominates when only a single sound burst75

is heard; whereas, a more accurate judgment prevails when multiple sound bursts are heard. We find that76

the observed misjudgments are well explained by a Bayesian model of decision-making that incorporates77

“prior experience” with natural vocalization statistics into synthetic vocalization judgements. Specifically,78

since the onset and duration are negatively correlated in natural vocalizations, incorporating this prior into79

duration judgements about synthetic vocalizations introduces a bias towards shorter durations when slopes80

are artificially fast. This model also accurately captures the improved performance and decreased bias seen81

in the behavior when more sensory evidence is accumulated over repeated sound bursts. These results82

support the idea that sound duration judgments reflect optimal integration of prior experience with ongoing83

accumulation of sensory information.84

Materials and Methods85

Quantifying Statistical Variations of Temporal Cues in Natural Alarm Vocalizations86

Prior studies found that rats and humans readily discriminated sound durations greater than 100 milliseconds87

long (Kelly et al., 2006) and that the slope of sound onset altered duration perception (Cumming et al., 2015;88

Paquette and Peretz, 1997; Stecker and Hafter, 2000; Grassi and Darwin, 2006; Friedrich and Heil, 2017).89

However, the statistical variations and relationships between slope and duration temporal cues have not90

been described for natural sounds. Here, we examined the statistical distributions of onset, offset, and91

duration temporal cues found in natural rodent alarm vocalizations (Fig. 1). Alarm vocalizations were92

generated by rodents in a conditioning paradigm as described previously (Melo-Thomas et al., 2020). and93

the vocalizations made in the absence of haloperidol were used and are available in an online data repository94

(DOI: 10.5281/zenodo.5762778). Here, 1330 vocalizations were selected for analysis based on having a95

spectral center of mass around 22kHz (24.7, ± 0.87), as is characteristic of alarm vocalizations (Fig. 1A).96

Additionally, two raters screened each vocalization to make sure all artifacts were removed from the analysis.97

Both raters, who were blind to the decisions of the other rater, showed high levels of agreement (intra-98
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rater percent agreement = 99.4%, inter-rater percent agreement = 98.0%). The onset, offset and intervening99

duration cues of each vocalization were determined using an approach detailed previously (Khatami et al.,100

2018). Briefly, a Hilbert transform was performed to recover the positive sound envelope (Fig. 1B, Teal101

line). Vocalization onset was defined as that point where the envelope sound level rose to 10 standard102

deviations above the noise floor (Fig. 1C,tonset). Vocalization offset was determined as a return to the noise103

floor or baseline sound level (Fig. 1C, toffset). The amplitude of each call was set as a ratio of the area under104

the curve (AUC) of the envelope (Y (t)) of the respective call such that,105

AUC =

∫ toffset

tonset

Y (t) dt

In order to calculate onset and offset slope, we first calculated the change in amplitude and the change in106

time for each vocalization in the data set. The change in relative amplitude value was mathematically be107

defined as:108

∆Y =
Y (thalf-max)− Y (tonset/offset)

AUC

Vocalization “plateau” duration was quantified as the time between the vocalization half-maximum follow-109

ing onset and the vocalization half-maximum prior to offset (Fig. 1C). In our set of 1330 vocalizations,110

plateau duration varied from 28 to 1467ms with a median and mean duration of 581 and 586ms. The vocal-111

ization onset slope was quantified by calculating the absolute amplitude rate of change between vocalization112

onset (tonset) and the first half-maximum peak (Y (thalf-max)). Likewise, the vocalization offset slope was113

quantified as the amplitude change between vocalization offset (toffset) and the first half-maximum peak114

(thalf-max). Finally, the absolute values were used to quantify the average onset and offset slope for each115

vocalization as summarized (Fig. 1E).116

sslope =
∆Y

∆t
, ∆t = |tonset/offset − thalf-max|
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sduration = t
(2)
half-max − t

(1)
half-max

Synthetic Vocalizations for Perceptual Testing117

To behaviorally test the effects of sound slope on duration perception, we generated synthetic vocalizations118

with a subset of slope and duration temporal cues observed in natural vocalizations (Fig. 1). In behavioral119

tests (Fig. 2), animals judged a set of seven synthetic vocalizations durations as being short or long in120

duration (Fig. 2C). The seven synthetic vocalizations ranged in duration from 100 to 250 milliseconds (Fig.121

2C) and fell within the range of alarm vocalization plateau durations reported above and summarized as a122

joint scatter plot (Fig. 1 C1). For synthetic vocalizations, the onset and offset slopes were the same123

(symmetric) for all 7 sound durations used in behavioral testing. Synthetic vocalization durations were124

defined by a square wave sound pressure waveform envelope. Accordingly, square wave sound pulses125

defined 7 different plateau durations (100, 130, 160, 175, 190, 220, and 250 ms) spanning the lower end of126

the natural vocalization duration range of 100 to 250 ms.127

The fast and slow slopes were chosen to span the extreme ends of natural vocalization distribution (Fig.128

2A, red and blue lines, respectively). To vary the slope of synthetic vocalizations, the square wave sound129

pulses were smoothed with a Basis spline (B-spline) filter function, as detailed previously (Lee et al., 2016).130

In two separate sets of sounds, the B-spline cutoff frequency was either 5 or 32 Hz to generate slow (83.7131

A/s) versus fast (534.8 A/s) onset-offset slopes, respectively. The average slow onset-offset slope (Fig. 1E,132

red bar, 83.7 A/m) used for behavioral testing fell within the range of onset slopes found in natural alarm133

vocalizations (Fig. 1C1). In contrast, the fast onset-offset slopes were more than 2 fold faster than the134

fastest onset slopes observed for comparable duration alarm vocalizations (Fig. 1E, blue bar; Fig. 1C1).135

This allowed for high cue contrast with the average fast onset-offset slope (Fig. 1E, blue bar) being 6.4 fold136

faster than the average slow onset-offset slope (Fig. 1E, red bar). The corresponding average fast and slow137

slopes were 534.8 A/ms versus 83.7 A/ms, respectively (Fig. 1E). Synthetic onset and offset sound slopes138

were estimated as the absolute approximate derivative at the first and second half-max points of the sound139

envelope, respectively. Given that onset and offset slopes were symmetric, sslope both slopes were defined140

by the following equation.141
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sslope =

∣∣∣∣ dY

dthalf-max

∣∣∣∣
Accordingly, square wave sound pulses defined 7 different plateau durations (100, 130, 160, 175, 190,142

220, and 250 ms) spanning the lower end of the natural vocalization duration range of 100 to 250 ms.143

These square wave sound pulses were smoothed with a Basis spline (B-spline) filter function having a144

cutoff frequency of either 5 or 32 Hz to generate slow (83.7 A/s) and fast (534.8 A/s) onset-offset slopes,145

respectively. For each burst duration, the total energy of the sound was adjusted to be equal across the two146

onset-offset sound conditions, to minimize the saliency of this cue. The onset times for any single sound147

burst in a sequence were staggered over a 125 ms window to approximate the average 2 Hz sound burst rate148

found in the 22 kHz vocalization sequences. The latter approach allowed us to minimize perceptual reliance149

on periodicity cues. For the 7 different sound durations, there were 100 different sequence variations and a150

total of 700 sound sequences for each onset-offset slope type. Thus, there were 1400 different sound burst151

sequences for the two onset-offset slope conditions. For all sequence variations, each sound burst had a152

unique random combination of tonal frequencies to reduce reliance on pitch perception for sound judgment.153

Our synthetic vocalizations differed from natural vocalizations in several key ways. Our synthetic vocal-154

izations were devoid of pitch cues, so we could probe temporal cue sensitivities. For all sequence variations,155

each sound burst had a unique random combination of tonal frequencies to reduce reliance on pitch per-156

ception for sound judgment. Thus, instead of having a fundamental frequency of 22 kHz with a harmonic157

frequency at 44 kHz, the synthetic vocalizations were shaped white noise. Natural vocalizations had differ-158

ent (asymmetric) onset versus offset slopes (Fig. 1B upper plot) but our synthetic vocalizations had the same159

(symmetric) onset and offset slope (Fig. 1B, lower plot). With this symmetry, shorter inter-vocalization in-160

tervals were possible allowing us to test sensitivity to slope and duration over more trials in a given block.161

In natural vocalizations, the onset and offset slopes were negatively or positively correlated with vocaliza-162

tion duration, respectively (Fig. 1C1 and C2, respectively). Moreover, onset slope and duration were more163

strongly correlated than the offset slope and duration (Fig. 1C1). Accordingly, the onset slope versus dura-164

tion correlation coefficient was -.38 (p<0.0001, N=1330 vocalizations) and the offset slope versus duration165

correlation coefficient was 0.12 (p<0.0001, N=1330). In our synthetic vocalizations, the slope and duration166
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did not co-vary (correlate) across the 7 different sound durations. Instead, for a given set of sounds (e.g. the167

fast slope sounds) the slopes were the same across all 7 sound durations. This allowed us to determine if the168

artificially imposed fast or slow sound slopes would uniformly shift the perception of duration.169

Using Natural Vocalization Statistics to Define the Prior of a Bayesian Model of Duration Judgement170

Though prior studies examined how sound onset slope impacts loudness and duration perception, no theory171

for how such cue interactions come about had been formulated. Here, we hypothesized that onset slope172

impacts sound duration perception because the two temporal cues co-vary in natural sounds such as alarm173

vocalizations. To address this hypothesis, we developed computational models based on natural sound174

statistics to predict shifts in duration judgment behavior observed with changes in slope. As detailed above,175

we quantified the probabilities of three cue distributions found in natural alarm vocalizations including176

onset, offset, and duration. Next, we quantified the co-variations or correlations in these cues including 1)177

the joint distribution of onset slopes and durations (”onset” prior type), 2) joint distribution of offset slopes178

and durations (”offset” prior type), and 3) the three-way joint distribution of onset slopes, offset slopes, and179

durations (”both” prior type). Finally, we used the Gaussian approximations of the three joint probability180

distributions as conditional priors in our Bayesian models to simulate the behavioral judgment of synthetic181

vocalizations under our three task conditions.182

Our first two steps to building our Bayesian model included quantifying the probabilities and correlations183

between slope and duration temporal cues found in natural vocalizations. To quantify the joint distribution184

of onset-offset slopes and duration cues found in natural alarm vocalizations, we fit a 2-D Gaussian to the185

empirical joint distributions of slopes and duration for 22 kHz alarm calls. The µ (2d vector of means) and186

Σ (2x2 covariance matrix) are the maximum likelihood estimates of slope and duration parameters in the187

joint probability distribution. The mean probabilities of the fast and slow slope conditions were then used188

as Gaussian priors in our Bayesian models (Fig. 1F). To incorporate these natural sound statistics into our189

Bayesian model, the maximum likelihood estimation was utilized to fit a multivariate Gaussian (bivariate190

for onset and offset prior types, trivariate for both prior type) as follows:191

8

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2022. ; https://doi.org/10.1101/2022.05.29.493898doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.29.493898
http://creativecommons.org/licenses/by-nc/4.0/


N (sduration, sslope;µ,Σ) =
1

2π
|Σ|−1/2 exp

[
−1

2
(sduration − µ)Σ−1(sduration − µ)T

]

To calculate conditional prior distributions, the slope (sslope) is set to the experimental slope conditions for192

slow (83.7 A/ms) and fast (534.8 A/ms).193

p(sduration, sslope|sslope) = N (µprior, σ
2
prior)

σ2prior = Σ11 − Σ12Σ
−1
22 Σ21

µprior = µ1 +Σ12Σ
−1
22 (sslope − µ2)

These two Gaussians served as priors in our Bayesian Decision theoretic model used to simulate and in a194

sense predict the sound duration judgement behavior, as detailed below.195

196

Automated Behavioral Training and Testing System197

Rats performed all behavioral tasks inside an acrylic crate located within a single-walled sound isolation198

chamber. Three nose ports containing photodiode sensors were located on the back wall of the acrylic box.199

An ultrasonic speaker (Avisoft Bioacoustics) was located along the back wall of the sound isolation chamber200

at approximately 7 cm above and 18 cm in front of the center nose port. Based on nose-poke behavior201

and computer-generated task conditionals, water reward was delivered automatically at a rate of 6 mL/min202

through Teflon tubing (17 gauge) located at the center-left and right nose ports. Reward volume varied with203

the phase of training but was approximately 25-50 µL for each correct choice. Behavior was monitored,204

sound, light, and water delivery was controlled by custom MATLAB software (Mathworks, Natick MA), in205

conjunction with Arduino-based pulse generator and state machines (Sanworks).206
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Figure 1: Analysis of natural vocalizations and correlation of sound onset/offset slope and plateau du-
ration. A) Example of raw 22kHz vocalizations collected from one rat recording with the corresponding
spectrogram. The examples shown have a center of mass at 25.0 kHz. B) [upper panel] Envelope of
the first vocalization in panel A. Points show the time of sound onset, time of offset, and the time at the
half-max values. [lower panel] Synthetic vocalizations used in discrimination task for the slow condition
(short, middle, longest duration conditions). C1 and C2) Onset and offset slopes systematically co-vary with
vocalization duration. Scatter plots illustrate the vocalization duration and slopes for each of the 1330 vocal-
izations analyzed (Methods). Vocalization durations ranged from 28 to 1467ms. C1) Onset slope decreases
as vocalization duration increases following resulting in a strong negative (inverse) correlation. Pearson
product-moment (r) and spearman rank-order (ρs) correlations are displayed with a significance level (***
p<.0001). C2) Offset slope increases as vocalization duration increases resulting in a weak positive corre-
lation. D) [panel 1] Estimated bivariate Gaussian for duration and onset slope based on data from panel C1.
[panel 2] Estimated bivariate Gaussian for duration and offset slope based on data from panel C2. E) Show-
ing the slope values of the experimental slope conditions based on the stimulus duration at the categorical
boundary (175 ms). F). Conditional univariate Gaussians derived from multivariate Gaussians. Conditional
values come from the slope values in panel E. The distributions corresponding to “joint” are derived via a
trivariate gaussian where duration, onset slope, and offset slope comprise the three axes.

Flexible Perceptual Categorization Task: Initial Training207

To determine how onset-offset slope and task conditions impact perception of sound duration, we trained208

male Long Evans rats (from Envigo) to perform a flexible perceptual categorization in a binomial choice209

task (Jaramillo and Zador, 2014). All animal procedures were approved by the Institutional Animal Care210

and Use Committee (IACUC) at the University of Connecticut.211
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Figure 2: Experimental design. A) An illustration of sound envelopes for the two sound slope conditions (red
= slow; blue = fast) and the shortest and longest plateau sound durations. In all variations of the behavioral
tasks, animals judged short versus long duration for seven different sound bursts varying in plateau durations
between 100 and 250 ms. B) Three example single trials to illustrate the relationship between sound burst
sequence played (pink bursts), the required minimum hold time (MHT) condition (top, middle, bottom row),
and the actual hold time at the center port (black verticle line). Across all trials and animals, the average
proportion of bursts heard during the actual hold time increases with the hold time and MHT as shown in
Figure 3C-D. C) Experimental layout of incremental sound plateau duration showing the duration of sounds
that are played within a given session. Rats are rewarded for choosing left if the stimulus duration is greater
than 175ms and rewarded for choosing right if the stimulus duration is less than 175ms. D) Sequence of
events in a given trial. The animal pokes the center port to initiate the trial and the playing of sounds, then
they must hold their nose in the center port for the minimum hold time depending on the MHT condition
(see panel B). Then the rat makes a decision by poking their nose into the right or left port. In the case of a
correct choice the rat receives 25mL of water, while in the case of an incorrect choice the rat receives a 30
second time out light which does not let them start a new trial for 30 seconds.

First, animals were acclimated to a reverse day-night cycle for training and testing and learned to obtain212

daily water by poking their nose into the nose ports to receive water reward. Animal weights were monitored213
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so that they did not fall below 80% of the individual’s baseline.214

To learn the binomial choice task, animals were progressed through six training phases. In phase 1,215

animals were acclimated to hearing sound stimuli and obtaining their daily water allotment by poking their216

nose in any one of the three nose ports to release a water reward. In phase 2, sequences of the shortest (100217

ms) or longest (250 ms) duration sound bursts were played each time animals held their nose in the center218

nose port for 150 ms. The sound sequence for that trial would continue to play until the animal by chance219

poked their nose in the appropriate left or right side-port associated with long and short duration sounds,220

respectively. In Phase 3, the required minimum hold time (MHT) for holding and hearing sound at the221

center nose port was increased from 150 ms to 600 ms in 2 ms increments per trial. A bright overhead light222

delivered a cue for a 6-second timeout when animals failed to hold for the MHT. During this timeout, rats223

were unable to initiate a new trial in the center port. Phase 4, additionally required that rats respond (choose224

a side port) within 4 seconds after the MHT. In phase 5, the overhead light was a cue for a 30-second timeout225

when animals choose the incorrect side port for the 100 and 250 ms duration sounds. This ended the trial226

and required rats to start a new trial b. Phase 5 was completed when animals correctly judged long (250 ms)227

and short (100 ms) duration sounds with an average percent correct of 77%. In Phase 6, animals learned228

to judge 100 and 250 ms sound durations as well as 5 additional intermediate sound durations. Generally,229

throughout all phases, rats were moved to each new phase following sessions of ≥ 115 correct hold trials.230

Since animals can develop motor biases toward choosing the left or right side, several anti-biasing231

measures were employed throughout all phases of training. First, no more than 3 trials of the same plateau232

duration were presented in a row. Additionally, after every 25 trials, a custom-written Matlab program233

automatically evaluated the animals’ bias and increased trial numbers as well as the reward volume (by 50234

uL) or correct choices on the side opposite of the bias.235

Final Training & Testing236

In Phase 6, our goal was to compare the ability to judge sound durations with either fast or slow237

onset-offset cues under similar conditions. During phase 6, animals judged sound durations with fast versus238

slow onset-offset slopes in alternating blocks or “test sessions” with a fixed onset-offset slope condition.239

For inclusion in our final analysis, a single session needed to have ≥115 correct hold trials, ≥ 77% correct240
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choice performance on the cardinal duration sound bursts, and show no significant bias. Rats completed 8241

sessions meeting the criteria (4 at each onset-offset slope condition) with a required hold time of 600 ms.242

To test the impact of reducing the accumulation of sound bursts heard, we introduced two additional243

conditions. First, we reduced the MHT from 600 to 200 milliseconds and animals continued to hear multiple244

sound bursts until they made a choice. Next, the hold time was maintained at 200 ms and only a single burst245

sound burst was played for animals to judge duration. On average, 21 and 23 training sessions (days) were246

required for animals to meet the criteria for the 600 and 200 hold time conditions, respectively. On average,247

37 sessions (days) were required for animals to reach the training criterion to judge the single burst sound248

condition.249

Estimated sound bursts accumulated based on hold time250

Since the sound sequences continue to play throughout the MHT until animals make a choice, the total251

number of sound bursts heard during the hold time was reduced by reducing the MHT from 600 to 200 ms252

and from multiple bursts to a single burst (Fig. 3). In our binomial choice task, animals were free to remain253

at the center port for longer before making their side port choice and sound continues to play until they254

made a choice. Thus, animals accumulated sound evidence during the “hold time” between initiating and255

completing a trial with a final choice at a side port. The actual hold times were all longer than the MHT256

and varied with the multi-burst versus single burst conditions (Fig. 3D) but minimally with the sound slope257

conditions (Fig. 3D, red vs blue symbols). We estimated the proportion of sound bursts heard for each task258

condition as illustrated for the 200 ms MHT, multi-burst condition (Fig. 3C). For this condition, the number259

of sound bursts played during the actual hold time was determined for each individual trial across all animals260

(e.g., Fig. 3C, x-axis, red dots). Using a linear piece-wise regression, we fit this data (Fig. 3C, black line)261

and estimated the proportion of sound bursts at the median hold time (Fig. 3C, black dot), as shown for this262

example condition (Fig. 3C). The proportion of sound bursts heard was estimated for all median hold times263

and sound conditions (Fig. 3E) using the same approach.264

265

Descriptive model of psychometric function266
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Figure 3: Sound onset-offset slopes and the number of sound bursts heard both impact perceptual judg-
ment of sound duration . A) Judgment of sound duration varies as a function of sound onset-offset slope
(slow versus fast, blue versus red) and MHT (left, middle and right panels). The mean choice probability
(filled circles) and S.E.M. (verticle bars) for judging sound duration as “long” are plotted for each of the
seven sound durations tested. To quantify the effect of sound onset-offset slope on sound duration judg-
ment, maximum likelihood psychometric fits are generated for all MHT and sound slope conditions. Lighter
colors indicate less evidence accumulation (correspondent with the MHT condition). Translucent bands in-
dicate 95% confidence intervals (non-parametric bootstrap iterations = 400). B) Illustration of the estimated
number of bursts (k̂) heard during a given trial with respect to the actual median hold time (based on piece-
wise regression, METHODS and supplementary material). C) Percent correct (%Correct) sound duration
judgment increases as the MHT is increased and the two are positively correlated (r = 0.888, p = 0.018).
The mean and S.E.M. of the percent correct responses are plotted as a function of the MHT (x-axis) for all
six task and sound conditions. D) Violin histograms of the probability distribution of actual hold times for
every trial (total trials= 22,756). E) The proportion and number of sound bursts heard increases with the
actual median hold time (see supplementary material). Data shows a near absolute correlation (r ≈ 1).

To quantify how sound onset-offset slope and task conditions impact sound duration judgement, choice

response data were fit with a standard modified sigmoid function using the Palamedes toolbox (Prins and
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Kingdom, 2018). The generic form of this psychometric function is a sigmoid link function scaled to lie

between asymptotic lapse rates:

ψ(x; θ) = γ + (1− γ − λ)ϕ(x;µ, σ) (1)

Where θ denotes the set of parameters {µ, σ, γ, λ}, and ϕ denotes the cumulative normal function.267

For equation 1, x refers to the sound plateau duration, ψ refers to probability a choice classifying the268

sound as long, σ corresponds to the standard deviation of the cumulative normal function. The standard269

deviation, σ , is linearly and inversely related to the sigmoid function slope. Thus, the sigma (σ) parameter270

and slope quantify perceptual variance and sensitivity, respectively, for judging short versus long sound271

durations. Accordingly, the sigma parameter indexes “sensory noise” or variation. The μ parameter272

corresponds to the mean of the cumulative normal distribution of choice probabilities. If we assume uniform273

priors and equal rewards for long versus short durations, µ defines the x-intercept and the point of subjective274

equality (px = 0.5), also known as the bias point, on the response function.275

Rather than fitting all conditions (2 slope conditions x 3 hold time conditions) with independent sets of276

4 parameters each, we sought to find the most constrained descriptive model that accounted for the data.277

We did this using Palamedes’ model comparison feature, which only allows parameters to vary between278

conditions if warranted by a model comparison (transformed likelihood ratio test), and constrains them to279

be fixed across conditions otherwise. (Prins and Kingdom, 2018)280

Normative (Bayesian decision-theoretic) model incorporating natural sound statistics281

To examine whether natural co-variations in onset-offset slopes and durations can predict how onset-offset282

cues impact sound duration judgement, we constructed a Bayesian decision-theoretic model of sound epoch283

duration judgements.284

Let the true onset-offset slope of a sound be s∗slope and its duration be s∗duration. We assume that animals285

maintain a prior belief about the joint occurrence of these features p(sduration, sslope) based on natural statis-286
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tics. We estimated this “natural statistics prior” based on the joint probability distribution of onset-offset287

slopes and durations found in natural alarm vocalizations, approximated by a bivariate Gaussian density288

(Fig. 1). We tested three different possibilities - that animals’ duration decisions were affected by only289

the onset slope, only the offset slope, or the joint distribution of onset and offset slopes - these correspond290

to different assumptions about which slope dimensions are predictive of natural vocalizations, and hence291

attended to. We assume that animals make duration judgements in accordance to Bayesian decision theory,292

by combining this prior with noisy sound duration evidence, and picking decisions that maximize expected293

utility, as follows:294

We assume that noisy duration observations on any given trial xduration is drawn from a Gaussian centered295

around the true duration, with a standard deviation of σs.296

p(xduration|s∗duration, s
∗
slope) = N (s∗duration, σ

2
s)

We allow for the possibility of different levels of noise depending on the onset-offset slope: σs ∈297

{σslow
s , σfast

s }. Further, we assume that the true onset-offset slope on the trial is known: sslope = s∗slope ∈298

{slow, fast}, since “fast” and “slow” slopes were chosen to be at extreme ends of rats’auditory neuron slope299

response fields and discrimination performance, assessed previously (Lee et al., 2016; Osman et al., 2018).300

Then the likelihood of the hypothesized duration sduration on a given trial is a Gaussian function, centered301

around the observation xduration302

L(sduration) = p(xduration|sduration, sslope)

We assume that rather than receiving just 1 observation, animals receive a constant rate of independent303

observations over time i.e. xduration = {x1, x2, ..., xk}. Assuming that animals integrate these optimally, this304

yields a total likelihood that is the product of likelihoods for each individual observation, hence reducing305

in width as an inverse function of the number (i.e., Fig. 3B the number of observed sound bursts, k̂) or the306

proportion (k) of observations in a given trial. We assume the proportion of observations (k) to be a linear307
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function of the hold time in a given trial (Fig. 3B and 3E): k ∝ thold,308

L(sduration) =
∏
k

p(xk|sduration, sslope) = N (x̄duration, σ
2
s/k)

x̄duration =
1

k

k∑
i=1

xi

Let the conditional prior p(sduration|sslope) evaluated at the current trial’s slope have a mean of µprior and309

a standard deviation of σprior. Then the posterior belief about duration, for a given set of noisy observations310

and slope condition is given by Bayes rule:311

p(sduration|xduration, sslope) ∝ p(xduration|sduration, sslope)p(sduration|sslope)

p(sduration|xduration, sslope) = N (µpost, σ
2
post)

µpost = wpriorµprior + wsx̄duration, σpost = (σ−2
prior + kσ−2

s )−1/2

wprior =
σ2post

σ2prior
, ws =

kσ2post

σ2s

Note that as the animal receives more observations, the influence of the stimulus increases and the influence312

of the prior reduces.313

The probability of a “long” duration is given by the integral of the posterior density beyond the true category314

boundary µ0, which we assume to be known. The maximum utility decision rule, assuming knowledge of315

rewards and priors, involves deterministically choosing “long” judgements when the posterior mean exceeds316

the category boundary, and “short” otherwise.317
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p(sduration > µ0|xduration, sslope) = 1− ϕ(µ0;µpost, σpost)

choice = long if p(sduration > µ0|xduration, sslope) > p(sduration < µ0|xduration, sslope)

= long if µpost > µ0

However, since the posterior mean depends on noisy observations, the probability of choosing a “long”318

judgement for a given true duration requires marginalizing over possible noisy values of xduration(eq. 7, Ma319

(2019))320

p(choice = long|s∗duration) = p(µpost > µ0|s∗duration)

= 1− ϕ(µ0;µ, σ)

µ = µprior(σ
−2
prior + σ−2

s )/σ2prior + s∗duration · k(σ−2
prior + σ−2

s )/σ−2
s (2)

σ =
√
k · σ−1/2

s /(σ−2
prior + kσ−2

s ) (3)

This yields a cumulative normal psychometric function (eq. 6) with midpoint µ and inverse slope σ. We321

augment this psychometric function with lapse rates, assuming that animals occasionally lapse due to fixed322

motor errors or inattention (Pisupati et al., 2021).323

In the inattention model, plapse is the probability of not attending, and pguess is assumed to be proportional to324

the prior probabilities of each category i.e. pguess = p(sduration > µ0|sslope) , while in the motor error model325

plapse is the probability of motor error, and pguess is assumed to be 0.5326

p(choice = long|s∗duration) = plapse · pguess + (1− plapse)(1− ϕ(µ0;µ, σ)) (4)
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This yields a psychometric function that can be fit to the behavior in any given condition, with 2 free327

parameters: σs and plapse for both “inattention” and “motor error” lapse models. Across conditions, we328

force plapse to be the same, based on a preliminary analysis that showed empirical lapse rates to be the same329

across conditions. The sensory noise parameter σs is either fixed across conditions (“fixed” noise models)330

or allowed to vary between different slope conditions (“variable” noise models). We fix k = 1 for the single331

burst 200ms hold time condition, allowing the k on other conditions to reflect relative integration times (fig.332

3). For the “perfect integration” model, k is fixed to be proportional to the empirical hold times, yielding333

no extra free parameters. We also entertain an “imperfect integration” model, that allows tintegration < thold,334

yielding 2 extra free parameters.335

For each of the three prior types (onset, offset, and both), 8 model variants (2 lapse models × 2 noise336

models × 2 integration models) were fit using maximum likelihood fitting, using MATLAB’s fmincon337

function. Thus, all together we compared 24 different models (3 prior types × 8 model variants). Model338

comparison was performed using Bayesian Information Criterion (BIC) and Akaike Information Criterion339

(AIC) as detailed (figure 5B, supplementary table 2). We also fit synthetic data generated from each model340

and performed a similar model comparison, in order to assess model recovery.341

RESULTS342

It is known that the slope of a sound’s onset can dramatically change how we perceive its duration (Stecker343

and Hafter, 2000; Grassi and Darwin, 2006; Friedrich and Heil, 2017) and yet the basis for this percep-344

tual interaction remains unknown. Here, we propose such cue interactions may reflect expectations based345

on prior experience hearing co-variations in the onset slope and durations of natural sounds. To examine346

this, we first quantify the statistical distributions of these cues in recordings of natural rodent alarm vocal-347

ization sequences (Methods, Fig. 1). As the name implies, alarm vocalizations are used to communicate348

an alarm to other rodents when they are distressed or alternately when they are defeated during rough and349

tumble play (Wöhr and Schwarting, 2008; Thomas et al., 1983; Saito et al., 2019). When rodents hear syn-350

thetic versions of these alarm vocalizations, they display stereotyped social responses provided the proper351

combinations of pitch and temporal cues are incorporated (Wöhr and Schwarting, 2008; Saito et al., 2019).352

Confirming prior studies, natural rodent alarm vocalizations examined here have a pitch or fundamental353

19

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2022. ; https://doi.org/10.1101/2022.05.29.493898doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.29.493898
http://creativecommons.org/licenses/by-nc/4.0/


frequency around 22 kHz (Fig. 1A1, A2) and durations ranging from 50 to 1500 ms ( Fig. 1B, C). In354

addition to these known acoustic features, we find the vocalizations with the shortest durations are statis-355

tically more likely to have faster onset slopes (Fig. 1C1). Conversely, the vocalizations with the longest356

duration are statistically more likely to have slower onset slopes (Fig. 1C1). Accordingly, the onset slope is357

inversely correlated with vocalization duration (Fig. 1C1, Onset slope: r=-.383 and p = 1e-47). In contrast,358

vocalization offset slopes have a weak positive correlation with duration (Fig. 1C2, Offset slope: r=.125 and359

p = 5e-6). These correlations between onset, offset and duration extend the list of known timing cues that360

identify vocalization type (Khatami et al., 2018; Saito et al., 2019).361

Given the statistical co-variations reported here, we hypothesize that the slope of a sound would strongly362

influence the perceptual judgment of its duration. To test our hypothesis, we create synthetic vocalizations363

or sound bursts with plateau duration (Methods) ranging from 100 to 250 ms, which falls within the range364

of natural alarm vocalizations ( Fig. 1C). Our sound design allows us to symmetrically vary the sound365

onset-offset slope independent of the sound duration (Methods). Thus, we are able to generate synthetic366

vocalizations with a range of durations (100-150 ms) that all have the same symmetric onset and offset367

slopes (Fig. 1B, bottom panel). To test the effects of the slope cue on duration perception, we generate368

one set of synthetic vocalizations with slow onset-offset slopes and another set with fast onset-offset slopes369

(Fig. 1E, red versus blue, respectively). Animals were trained initially on sound sequences with slow onset-370

offset slopes until they reach a high-performance criterion (Methods). Importantly, the normalized slow371

onset-offset slope used here is 84 A/s (Fig. 1E), which falls within the range we observe in the natural372

alarm vocalizations with plateau durations ranging from 100 to 150 ms (Methods, Fig. 1C). In contrast,373

the fast onset-offset slope used here is about two-fold faster than the fastest onset slope observed in the374

natural vocalizations but still within the range of slopes evoking significant neural responses in rats (Lee375

et al., 2016). Multivariate Gaussian fits of the joint distribution of natural vocalization slope and durations376

(Fig. 1C1, C2) are used to quantify the co-occurrence of sound slope and duration cues (Methods, Fig. D1,377

D2). In theory, prior experience hearing natural sounds such as alarm vocalizations and the statistical co-378

variations therein could influence animals’ inferences about sound duration. Moreover, co-variation of onset379

or offset slopes alone or together could be used to infer duration. Accordingly, these three cue-combination380

scenarios quantified with Gaussian distributions corresponding to fast and slow slopes are used to define the381
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1-dimensional priors over sound duration for the fast and slow slope conditions, respectively (Fig. 1F, blue382

versus red, respectively, Methods).383

Previous studies find sound judgment can improve with an accumulation of sensory information across384

time and repetitions of acoustic events (Brunton et al., 2013; Liu et al., 2015; Raposo et al., 2012). This385

principle applies to sound duration perception (Raposo et al., 2012), though most other prior studies have386

probed duration perception of single sound bursts instead of sound burst sequences (Friedrich and Heil,387

2017; Kelly et al., 2006). Here, we use a binomial choice task (Fig. 2) to test how animals judge388

the duration of synthetic sounds when onset-offset slopes are fast versus slow (Fig. 2A). The duration389

judgment is examined across three task conditions (Fig. 2B) using a reinforcement strategy (Fig. 2C) to390

train animals to perform this bimodal two-alternative forced-choice behavioral task (Fig. 2D). Our three391

task contingencies allow us to examine sound duration judgment as a function of the proportional number392

of sound bursts heard (Fig. 3). Though the required minimum hold time (MHT) is fixed in the three task393

contingencies, animals may hold longer than the MHT and the actual hold time varies on a trial-by-trial394

basis (Methods, Fig. 3D, solid red and blue dots). For example, when MHT is 200 ms and multiple sound395

bursts are played, the actual hold time is 445 ms (Fig. 3C, vertical dotted line). Under the latter condition,396

animals hear on average 1 single sound burst before releasing from the center port (Fig. 3C, horizontal397

dotted line). Conversely, when MHT is 600 ms and the actual median hold time is 652 ms (Fig. 3D, red398

dot, top histogram), the number of sound bursts heard is 1.28 on average. Thus, the proportional number399

of sound bursts heard increases when MHT is increased from 200 to 600 ms and multiple sound bursts are400

heard (Fig. 3E). In the third task contingency where the MHT is 200 ms and only a single sound burst401

is ever played, animals typically heard only a fraction (0.74) of one sound burst before making a duration402

judgment (Fig. 3E). In all task conditions, animals judge 7 different sound durations as short versus long403

(Fig. 2C) based on reward and time-out contingencies (Fig. 2D, Methods). Animals initially learn to hold404

for a minimum of 600 ms while hearing a sequence of synthetic vocalizations with a varied but average405

repetition rate of 2 Hz (Fig. 2B, 600 ms MHT, multi-burst). After reaching the task performance criteria406

(Methods), duration judgment is tested for sounds with slow versus fast onset-offset slopes in alternating407

test blocks (Fig. 2A). Animals then progressively learn to perform the sound duration judgment task while408

holding for a minimum of 200 ms and hearing only one synthetic vocalization (Fig. 2B).409
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Though prior studies have demonstrated that sound slope cues alter duration perception none have ex-410

amined how accumulating more sensory evidence impacts this cue interaction. Here, we find that sound411

duration judgment is significantly impacted by both the sound slope cues and by hearing proportionally412

more sound bursts (Figs. 3 and 4). Population performance for judging seven different sound durations is413

quantified as the mean choice probability for judging sounds as long in duration (Fig. 3A, filled circles,414

Methods). Initially, behavioral responses are fit with a standard sigmoidal response function (Methods, Fig.415

3A, red and blue lines) in order to quantify performance metrics (Fig. 4). For all three MHT and task416

conditions, there is a rightward shift in the perceptual boundary or ”bias” (Fig. 3A, vertical dotted lines)417

for sound duration judgment when sounds have fast (Fig. 3A, blue lines) versus slow (Fig. 3A, red lines)418

onset-offset slope. This rightward bias indicates that animals are judging all sound durations as shorter when419

their onset-offset slope is faster. This perceptual bias is most pronounced for the fast slope condition, and420

when animals haven’t accumulated much sensory information i.e. when they hear a maximum of one single421

sound (Fig. 3A, left panel) and on average only a fraction of a single sound burst (Fig. 3E, light blue, and422

pink dots). This perceptual effect is readily appreciated by comparing the bias parameter when hearing a423

single burst with slow (Fig. 4A, SB) versus fast (Fig. 4B, SB) onset-offset slopes. Independent of the sound424

onset-offset slope, sound duration judgment becomes sharper, and psychometric response functions steeper,425

as more sound bursts are heard (Fig. 3A, 600 ms vs 200 ms MHT, right versus left panels). Accordingly,426

there is a rank order decrease in the inverse sensitivity (Fig. 4C, D) which corresponds to an increase in427

judgment accuracy across task conditions where animals hear proportionally more sound bursts. This effect428

is observed for sounds with slow or fast onset-offset slopes suggesting that it is primarily related to the429

accumulation of sensory information and not sound slope. Finally, changing the sound onset-offset slope430

or number of sound bursts heard has no impact on the overall performance levels and relative performance431

lapse for judging the shortest and longest duration sounds (Fig. 4E, F). Together, these results indicate that432

sound slope cues can bias duration perception and that accumulating more sensory evidence can effectively433

reduce this bias.434

Although our behavioral results indicate that sound slope cues impact sound duration judgments, the435

underlying principles driving this temporal cue and task interaction remain unclear. To examine whether436
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Figure 4: Distinct shifts in perception with change in onset-offset slopes versus change in number of bursts
heard. Psychometric response function bias (µ), inverse sensitivity (σ) and lapse parameters (γ+λ) sampling
distributions are shown for all task conditions (non-parametric bootstrap iterations = 400). A-B) The bias is
shifted to higher values under all three MHT conditions when sound onset-offset slopes change from slow to
fast (two-tailed z-test - 200ms SB: p=9.5e-8, z=5.77; 200ms MB: p=1.4e-7, z=5.71; 600ms MB: p=2.2e-7,
z=5.62). C-D). Inverse sensitivity or σ shows a consistent decrease with respect to the hold time condition
(z-test p-values shown in figure). E-D) Lapse rates are fixed across hold time and and sound slope condition
(mean [ +/- SEM]= .113 [+/-.028]). * p<.05,** p<.01, ***p<.001

such interactions stem from expectations based on prior experience hearing natural sounds,we fit the be-437

havioral responses using a normative, Bayesian decision-theoretic model of decision-making (Fig. 5). As438

illustrated in the joint probability distributions of durations and slopes, onset and offset slopes both co-vary439

with the duration of natural alarm vocalizations (Fig. 1). We utilized the Gaussian fits of these empirical440

joint distributions as parameter-free, “natural statistics priors” to infer duration in our Bayesian model (Fig.441
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1E). To fit the data, we compare three different prior types (Fig. 5B, table with rows reflecting prior type)442

derived from three different natural statistical joint distributions for duration and onset slope (onset, Fig. 1F,443

top), duration and offset slope (offset, Fig. 1F, middle) or duration with both onset and offset slopes (both,444

Fig. 1F, bottom). The model had free parameters to account for three potential sources of errors in deci-445

sions: “noise” in sensory observations, “lapses” or random decisions (Pisupati et al., 2021), and suboptimal446

“integration” strategies. Accounting for these three sources of noise in our models with different integration447

constraints generates a total of 8 model variations tested (Methods, Fig. 5B, table with three types of column448

subdivisions: lapse type, noise constraint, and integration type). The noise in duration observations could ei-449

ther be the same across slope conditions (“fixed”, 1 parameter across conditions) or differ for different slope450

conditions (“variable”, 2 parameters for the two slope conditions). Lapses, or decisions made irrespective451

of duration evidence, could arise due to motor errors and hence be made randomly (choosing either decision452

with a probability of 0.5), and occur with a fixed probability across conditions (“motor error”, 1 parameter453

across conditions), or arise from inattention and hence be made with a bias reflecting that condition’s prior,454

and occur with a variable probability across conditions, (“inattention”, 2 parameters for the two slope con-455

ditions). The integration of evidence across multiple bursts was either perfectly optimal, with the number of456

effective bursts being fixed to be equal to the empirical hold times (“perfect”, no extra free parameters), or457

suboptimal, with the effective number of bursts being less than the empirical hold times (“imperfect”, with458

2 additional free parameters). The different assumptions about these three sources of errors, combined with459

the three different prior types gave rise to a total of 24 combinations, which we compared using factorial460

model comparison (Ma, 2019).461

When we fit the behavioral data with the twenty-four different models, we find the overall best-fitting462

model according to Bayesian information criterion (BIC) and Akaike information criteria (AIC) used the463

empirical prior based on sound onset slopes and durations, and required only three free parameters - variable464

sensory noise parameters across slope conditions, and a fixed lapse probability due to motor errors across465

conditions, with perfect integration of evidence determined by the empirical hold times (Fig. 5A, 5B,466

diamond). In contrast, across all model variations, priors based on the offset slope alone or based on a467

combination of onset and offset slope did not accurately predict shifts in sound duration judgment with468

sound slope (Fig. 5B, offset and both). Additionally, sensory noise but not lapse probabilities must vary469
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to account for response differences across behavioral task conditions. Importantly, our model is highly470

constrained, using an entirely parameter-free empirical prior to account for perceptual biases, and only 3471

additional free parameters to account for other sources of errors. In comparison, the standard sigmoidal472

model requires thirteen free parameters (with a total of 6 individual bias parameters) to accurately fit the473

response data (Fig. 3A). Hence, incorporating natural sound statistics offers a parsimonious explanation474

for the perceptual misjudgements in sound duration caused by varying sound slopes. Finally, our Bayesian475

model captures the inverse relationship observed between the empirical hold times and the perceptual bias476

as well as inverse sensitivity, since integrating more sensory evidence overcomes the influence of the prior,477

leading to less biased and more accurate decisions (Fig. 5C). Since the best fitting model performed perfect478

integration, it required no additional free parameters to capture this effect, directly using the empirical hold479

times as a parameter-free proxy for the number of accumulated evidence bursts. In summary, model fits480

indicate that two key factors account for (mis)judgments of sound duration - prior experiences with co-481

variations in natural sound statistics, and the amount of accumulated sensory evidence. Together, these482

results offer a principled and normative explanation for why and how one auditory temporal cue can bias483

the perception of another, and how accumulating sensory information can overcome these biases.484

25

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2022. ; https://doi.org/10.1101/2022.05.29.493898doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.29.493898
http://creativecommons.org/licenses/by-nc/4.0/


Figure 5: Bayesian decision theoretic (BDT) model of observed bias. A) Model fits from the best-fitting
BDT model (solid lines) overlaid onto raw decision probabilities (points) from the behavioral experiment. B)
Factorial model comparison of each of the three types of parameter constraints (lapse, noise and integration)
for the three types of prior (onset, offset and both). Models are rank-ordered so that the model with the
lowest information criterion (Akaike and Bayesian) is 1 (the best model, darkest color) and the one with
the highest information criterion is 24 (the worst model, lightest color). Diamond denotes the best model.
C) Line plot to demonstrating the change in bias across different prior types as a function of amount of
accumulated evidence (prior models shown here are based on the lowest AIC model for each prior type; see
supplementary materials for raw AIC/BIC values).

485

DISCUSSION486

Previous studies find the rate of sound onset dramatically influences the perception of sound duration but487

the underlying principles for these cue interactions remain unknown (Cumming et al., 2015; Paquette and488

Peretz, 1997; Stecker and Hafter, 2000; Grassi and Darwin, 2006; Friedrich and Heil, 2017; Bizley and489

Cohen, 2013). We previously demonstrated that natural co-variations between duration and other temporal490

cues can be used to differentiate vocalization type across many animals including humans (Khatami et al.,491

2018). Using a similar approach here, we find a strong inverse correlation between the distribution of492
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onset slopes and durations of rodent alarm vocalizations (Fig 1). Accordingly, vocalizations with faster493

onset slopes are more likely to be short in duration. Given this correlation, onset slopes could serve as a494

predictive cue for vocalization duration. In contrast, offset slope and duration only have a weak positive495

correlation. These observations lead us to hypothesize that perception of sound duration should be biased496

by sound onset slopes, more so than offset slopes. Behaviorally, we find that rodents are perceptually biased497

to judge synthetic vocalizations with fast onset-offset slopes as being shorter in duration (Fig. 3, 4). To498

gain insight into this “mis-judgment” of duration and explore the potential contributions of onset and offset499

slope statistics, we model the behavior with a normative, Bayesian decision-theoretic model. We find that500

the behavioral data is best fit by a model that incorporates the joint statistics of durations and onset slopes of501

natural vocalizations as a prior (Fig. 5A, blue curves; Fig. 5B, diamond). This supports our hypothesis that502

onset slope more strongly biases the perception of duration than offset slope due to its natural co-variations503

with duration, and accounts for the behavioral biases observed in the present study. Since our model accounts504

for these biases by using empirical priors derived from natural vocalizations, and empirical hold times as505

a proxy of accumulated evidence, it requires far fewer parameters than standard psychometric functions506

to capture the observed biases (Fig. 3). Models that incorporate co-variations in onset slope and duration507

perform better than similarly constrained models incorporating co-variations of offset and duration, or the508

combined co-variations of onset and offset slopes with duration (Fig. 5B, offset and both). Moreover, our509

Bayesian model captures the behaviorally observed decrease in bias (Fig. 5C) and improvement in sound510

duration sensitivity (Fig. 3B) as animals listen to and integrate more sensory information across multiple511

vocalizations, reducing the influence of the prior. In summary, our results demonstrate that prior experience512

with the natural co-variations in onset, offset and duration cues can explain why onset slope cues heavily513

bias perception of sound duration, with this perceptual bias reducing if perceptual evidence is integrated514

over longer time windows.515

Cue integration both within and across sensory modalities has been shown to follow principles of Bayesian516

inference in a number of studies in humans (Trommershauser et al., 2011) as well as rodents (Raposo et517

al., 2012; Madl et al., 2014; Nikbakht et al., 2018; Sheppard et al., 2013). According to these principles,518

animals integrate information from multiple cues if they expect them to arise from a common source that519

produces correlated measurements across cues. Such expectations can be formalized as a “coupling prior”520
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between cues, reflecting statistical regularities learned with prior experience (Spence, 2011). Such priors are521

beneficial (i.e. lead to improved accuracy) in natural environments and tasks that respect these correlations,522

and especially beneficial when sensory information about one or more cues is limited or noisy. However,523

the same priors can be detrimental (i.e. lead to biases and impaired accuracy) in tasks that do not respect524

these natural, learned regularities. Accordingly, in the present study when the synthetic vocalization du-525

ration is the task-relevant cue and the onset-offset slopes are artificially fast compared to natural statistics,526

duration judgment is biased and performance drops. In a similar vein, rats and mice performing a visual527

rate-discrimination task (Odoemene et al., 2018) are influenced not just by the rewarded relevant variable528

(i.e. event rate) but also by the total event count. While this may be beneficial on most trials when rate and529

count are correlated, it can lead to incorrectly biased decisions on “catch” trials when the two are varied530

independently. These findings support the idea that there are advantages and disadvantages to relying on en-531

vironmental priors, especially when generalizing them to new environments, and decision-making systems532

will need to flexibly tune how much they generalize in order to remain adaptive.533

How can one be sure that biases observed in a given task are the result of biased priors, rather than other534

biasing influences on decisions? Unconstrained Bayesian models might be overly flexible and capable of535

accounting for a vast range of erroneous behaviors through the use of mismatched priors, and hence difficult536

to falsify (Rahnev and Denison, 2018). This is why we instead opt for the approach of constraining the537

parameters of the prior in our model entirely based on empirical natural statistics, with the sole assumption538

being that animals’ judgments about synthetic vocalizations are biased by their prior beliefs about sounds539

such as vocalizations. Moreover, decisions in Bayesian models are made by combining priors with incoming540

samples of sensory evidence, each weighted by their respective certainty. Hence prolonged sampling and541

integration of sensory evidence can lead to more accurate decisions by offering more certain evidence and542

correcting for any biases from the prior, a feature evident in the behavioral data and captured by our model543

based on empirical sampling times. These results extend previous work in support of the ability to optimally544

accumulate auditory information to improve perceptual accuracy (Brunton et al., 2013)545

What neural substrates could underlie these Bayesian computations? In order to maximize efficiency,546

neurons in the brain should utilize codes that match the statistics of the signals they represent (Gervain and547

Geffen, 2019; Carruthers et al., 2013). Accordingly, theoretical work on efficient coding has proposed that548
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prior distributions could be implicitly represented in the distribution of tuning curves in neural populations,549

with regions of higher prior probability being tiled more densely by more selective neurons (Ganguli and550

Simoncelli, 2014a). Consequently, encoding a correlated “coupling prior” across multiple cues would entail551

joint (rather than independent) encoding of these cues, with sharper and denser tuning to cue combinations552

congruent with the prior (Yerxa et al., 2020a). Such joint encoding schemes would encourage integration,553

prioritizing the efficient inference of common sources over the accurate reconstruction of component cues554

(Zhang et al., 2019). At the same time, independent encoding schemes would remain advantageous when555

no common source is detected and integration is not warranted (Zhang et al., 2019).556

The simultaneously parallel and hierarchical structure of cortical pathways offers a possible candidate for a557

flexible Bayesian inference (Rohe et al., 2019). Following a general rule observed in other sensory cortices,558

as one transitions from primary to secondary auditory cortices, neurons respond to dynamically changing559

sensory stimuli on increasingly longer timescales (Hamilton et al., 2018; Wang and Kennedy, 2016; Chaud-560

huri et al., 2015; Lee et al., 2016; Johnson et al., 2020). We and others have shown previously that primary561

and secondary auditory cortices encode multiple temporal cues including onset and offset timing, duration,562

and rhythmicity cues in sound sequences (Lee et al., 2016; Read and Reyes, 2018). However, primary corti-563

cal neurons respond to and encode sound onset-offset slope and sound rhythmicity independently (Lee et al.,564

2016), and more accurately categorize the sound’s onset-offset slope and rhythmicity than those in secondary565

auditory cortices (Osman et al., 2018). Likewise, primary auditory cortical neurons accurately encode vari-566

ations in spectral and temporal cues in natural vocalization sequences (Lee et al., 2016; Storace et al., 2011;567

Carruthers et al., 2013; Gervain and Geffen, 2019). In contrast, secondary auditory cortical neurons respond568

to and encode these cues in a joint manner. For example, secondary auditory cortical neurons that respond569

preferentially to sounds with slow onset-offset slopes tend to have more sustained spike-timing responses570

and consequently a slower repetition rate or rhythmicity sensitivity (Lee et al., 2016). This co-variation in571

neural sensitivity to the two temporal cues can be used to objectively differentiate sound sequences (Osman572

et al., 2018). Thus, its neural spiking patterns, much like the natural sensory statistics themselves, can pro-573

vide temporal cues that distinguish natural vocalizations (Khatami et al., 2018; Elie and Theunissen, 2019;574

Carruthers et al., 2013). This raises the interesting possibility that the primary auditory cortical area pro-575

vides a neural substrate for more accurate estimations of separate sources through independent encoding,576
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while secondary auditory cortical areas allow for more efficient probabilistic inference of common sources.577

Accordingly, secondary auditory cortex might be expected to encode the joint statistical co-variations found578

in natural sounds such as vocalizations, providing the “top-down” neural substrate for a “coupling prior”.579

Though future studies are needed to establish this link, auditory cortices contain the neural code to represent580

multiple temporal cues and support their optimal integration with prior experience. This neural code may in581

turn be relayed to downstream areas such as the secondary motor cortex or striatum for further integration582

over time (Erlich et al., 2015; Yartsev et al., 2018), or with value (Pisupati et al., 2021) to support optimal583

decision-making.584

585

Supplemental Materials586

Supplemental Figure 1: Best model fits according to AIC for offset and joint prior types.
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Prior
Type

Noise
Constraint

Integration
Model

Lapse
Constraint

∆ BIC ∆ AIC nLL

onset fixed perfect fixed 76.37 84.59 12834.83
onset fixed perfect inattention 7271.68 7279.89 16432.48
onset fixed imperfect fixed 95.55 87.33 12834.2
onset fixed imperfect inattention 7220.65 7212.44 16396.75
onset variable perfect fixed 0 0 12791.53
onset variable perfect inattention 5706.65 5706.65 15644.86
onset variable imperfect fixed 18.02 1.59 12790.33
onset variable imperfect inattention 13243.25 13226.82 19402.94
offset fixed perfect fixed 705.07 713.29 13149.18
offset fixed perfect inattention 31603.35 31611.57 28598.32
offset fixed imperfect fixed 854.48 846.27 13213.67
offset fixed imperfect inattention 20168.25 20160.03 22870.55
offset variable perfect fixed 698.15 698.15 13140.61
offset variable perfect inattention 13535.87 13535.87 19559.47
offset variable imperfect fixed 716.38 699.94 13139.5
offset variable imperfect inattention 27684.32 27667.88 26623.47
joint fixed perfect fixed 417.16 425.38 13005.22
joint fixed perfect inattention 6873.15 6881.37 16233.22
joint fixed imperfect fixed 431.05 422.83 13001.95
joint fixed imperfect inattention 6701.02 6692.81 16136.94
joint variable perfect fixed 373.03 373.03 12978.05
joint variable perfect inattention 6640.6 6640.6 16111.83
joint variable imperfect fixed 725.58 709.15 13144.11
joint variable imperfect inattention 6486.2 6469.76 16024.41

Supplemental Table 1: Model fit metrics for all models compared in the study.

Duration Onset Slope Offset Slope
Duration 1 3.0e-39 2.0e-26

Onset Slope -0.38 1 4.0e-06
Offset Slope 0.12 0.13 1

Mean 586.5 38.5 10.2
SD 245.6 24.5 9.9

Supplemental Table 2: Summary statistics used as the parameters for joint priors. Correlation matrix con-
tains Pearson product-moment correlations below the diagonal and their corresponding p-values above the
diagonal.
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Supplemental Figure 2: Scatterplots demonstrating the relationship between the time the animal was holding
in the center port and the number of bursts heard during that time period (all trials). The residual variability
is due to varying duration and the intentional jittering of the presentation of the sound stimulus. A piece-
wise linear regression is fit to the data using robust least squares in order to account for heteroscedasticity.
Plateaus represent the empty intervals in between sound bursts. The number of estimated bursts (k̂) in a
given condition is predicted based on the median hold time for the given condition ( t̃hold). As shown in
figure 3, k̂ and t̃hold are nearly perfectly correlated (r = 0.998, p < 0.0001).
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Khatami F, Wöhr M, Read HL, Escabı́ MA (2018) Origins of scale invariance in vocalization sequences and633

speech. PLoS computational biology 14:e1005996.634

34

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2022. ; https://doi.org/10.1101/2022.05.29.493898doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.29.493898
http://creativecommons.org/licenses/by-nc/4.0/


Lausen A, Hammerschmidt K (2020) Emotion recognition and confidence ratings predicted by vocal stim-635

ulus type and prosodic parameters. Humanities and Social Sciences Communications 7:1–17.636

Lee CM, Osman AF, Volgushev M, Escabı́ MA, Read HL (2016) Neural spike-timing patterns vary with637

sound shape and periodicity in three auditory cortical fields. Journal of neurophysiology .638

Liu AS, Tsunada J, Gold JI, Cohen YE (2015) Temporal integration of auditory information is invariant to639

temporal grouping cues. ENeuro 2.640

Ma WJ (2019) Bayesian decision models: A primer. Neuron 104:164–175.641

Madl T, Franklin S, Chen K, Montaldi D, Trappl R (2014) Bayesian integration of information in hippocam-642

pal place cells. PLOS one 9:e89762.643

McDermott JH, Simoncelli EP (2011) Sound texture perception via statistics of the auditory periphery:644

evidence from sound synthesis. Neuron 71:926–940.645
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